

Airborne Solar Induced Chlorophyll Fluorescence to Characterize Arctic Boreal Zone Phenology and Productivity

Darren Drewry, Christian Frankenberg, David Schimel,

Nicholas Parazoo

SYNDONIA BRET-HARTE, Eugenie Euskirchen,

Adrian Rocha, CHARLES MILLER

Ryan Pavlick

- Objective 1: Acquire CFIS data in ABoVE domain in summer 2017
 - Acquire data over systems with contrasting productivity
 - Maximize spatial coincidence with other optical sensors and radars
 - Sample active flux towers in the region
- Objective 2: Analyze CFIS SIF Level 2 retrievals to characterize gradients in ecophysiological activity as functions of variation in:
 - Canopy chemistry, photosynthetic capacity, chlorophyll & water contents (AVIRIS-NG)
 - Plant functional type
 - Canopy / Ecosystem Structure (LVIS)
 - Disturbance history
 - Subsurface hydrology
- Objective 3: Demonstrate the utility of high resolution SIF data to constrain simulated GPP estimates over flight transects.
 - Integrate SIF biochemistry into the Community Land Model (CLM)
 - Utilize relationships between SIF and GPP to constrain biochemical parameters, applying a SIF constraint on simulated GPP estimation.

- Objective 1: Acquire CFIS data in ABoVE domain in summer 2017
 - Acquire data over systems with contrasting productivity
 - Maximize spatial coincidence with other optical sensors and radars
 - Sample active flux towers in the region
- Objective 2: Analyze CFIS SIF Level 2 retrievals to characterize gradients in ecophysiological activity as functions of variation in:
 - Canopy chemistry, photosynthetic capacity, chlorophyll & water contents (AVIRIS-NG)
 - Plant functional type
 - Canopy / Ecosystem Structure (LVIS)
 - Disturbance history
 - Subsurface hydrology
- Objective 3: Demonstrate the utility of high resolution SIF data to constrain simulated GPP estimates over flight transects.
 - Integrate SIF biochemistry into the Community Land Model (CLM)
 - Utilize relationships between SIF and GPP to constrain biochemical parameters, applying a SIF constraint on simulated GPP estimation.

CFIS Overview

- Chlorophyll Fluorescence Imaging Spectrometer (CFIS), optimized for retrieving SIF
 - Pushbroom grating spectrometer
 - 11 degrees FOV
 - Spectral Range: 737 772 nm
 - ~2K spectral bands; ~2K spatial bands
 - High Spectral Resolution
 - <0.01nm FWHM; sampling ~0.017 nm/pixel
 - Signal-to-Noise Ratios exceeding500
- Built for OCO-2 SIF validation
- Initial flight campaigns (engineering and science) in 2015, 2016

What is Solar Induced Fluorescence (SIF)?

$$GPP = PAR \cdot fPAR \cdot \varphi_p$$

 $SIF = PAR \cdot fPAR \cdot \varphi_f$
 $GPP = SIF \cdot \varphi_p / \varphi_f$

- Solar Induced chlorophyll Fluorescence (SIF) is a direct by-product of photosynthesis
- SIF provides a unique dynamic proxy for gross primary production GPP
- SIF is only ~1-2% of continuum radiance

Retrieval approaches use filling-in of Fraunhofer lines (solar absorption features)

 High spectral resolution allows SIF retrievals not affected by atmospheric interference (Frankenberg et al, 2011; Joiner et al, 2011)

Keck Fluorescence Workshop Report (2013)

1 1.5 VPD [kPa]

2.5